Solving partial differential equations on irregular domains with moving interfaces, with applications to superconformal electrodeposition in semiconductor manufacturing
نویسندگان
چکیده
We present a numerical algorithm for solving partial differential equations on irregular domains with moving interfaces. Instead of the typical approach of solving in a larger rectangular domain, our approach performs most calculations only in the desired domain. To do so efficiently, we have developed a one-sided multigrid method to solve the corresponding large sparse linear systems. Our focus is on the simulation of the electrodeposition process in semiconductor manufacturing in both two and three dimensions. Our goal is to track the position of the interface between the metal and the electrolyte as the features are filled and to determine which initial configurations and physical parameters lead to superfilling. We begin by motivating the set of equations which model the electrodeposition process. Building on existing models for superconformal electrodeposition, we develop a model which naturally arises from a conservation law form of surface additive evolution. We then introduce several numerical algorithms, including a conservative material transport level set method and our multigrid method for one-sided diffusion equations. We then analyze the accuracy of our numerical methods. Finally, we compare our result with experiment over a wide range of physical parameters. 2008 Elsevier Inc. All rights reserved.
منابع مشابه
Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملA NEW ANALYTICAL METHOD FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS
In the literature, several numerical methods are proposed for solvingnth-order fuzzy linear differential equations. However, till now there areonly two analytical methods for the same. In this paper, the fuzzy Kolmogorov'sdifferential equations, obtained with the help of fuzzy Markov modelof piston manufacturing system, are solved by one of these analytical methodsand illustrated that the obtai...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملA meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008